Essays on Measuring Credit and Property Prices Gaps

Nam Nguyen

UWM

August 27, 2022

Nam Nguyen (UWM)

Chapter 2: Measuring Credit Gaps

Introduction

Motivation

- No unanimity on how to measure excessive credit. Bank for International Settlements uses HP filter to create a credit gap measurement that performs well in predicting future financial crises. However, there are other competing gap measurements.
- Nelson (2008) that the deviation of a non-stationary variable from its long-run trend should predict future changes of opposite sign in the variable. We utilize this idea and forecast combination method to propose a synthesized credit gap measurement.

Contribution

Since different trend-cycle decomposition methods of credit-to-GDP ratio provide us different credit gap measures, we handle the model uncertainty by assigning weights on these different credit gap measures based on its relative out-of-sample predictive power based on Bates and Granger (1969) forecast combination method.

• Our proposed credit gap measure dominates the alternate credit gaps in terms of its relative out-of-sample predictive power.

Methodology

Data

The measure of credit is total credit to the private non-financial sector, as published in the BIS database, capturing total borrowing from all domestic and foreign sources.

• Quarterly data from 1983:Q1-2020:Q2

All these trend-cycle decomposition methods are based on the premise that a non-stationary series is the sum of a trend and a stationary cyclical component:

$$y_t = \tau_t + c_t \tag{1}$$

Trend-cycle decomposition models

HP filter

$$min_{\tau} \left(\sum_{t=1}^{T} (y_t - \tau_t)^2 + \lambda \sum_{t=2}^{T-1} [(\tau_{t-1} - \tau_t) - (\tau_t - \tau_{t-1})]^2 \right) \quad (2)$$

• λ will be set at 1600, 3000, 400000 (BIS Basel Gap) in our models

Unobserved-Component model: Clark(1987)

$$\tau_t = \tau_{t-1} + \eta_t, \eta_t \tilde{iid}(0, \sigma_\eta^2)$$

$$c_t = \Phi(L)c_t + u_t, u_t \tilde{iid}(0, \sigma_u^2)$$
(3)

Trend-cycle decomposition models

Beveridge-Nelson

$$y_t = y_0 + \mu t + \Psi(1) \sum_{k=1}^t u_t + \widetilde{u_t} - \widetilde{u_0}$$
 (4)

Hamilton filter (2018)

$$y_{t+h} = \alpha + \beta_1 y_{t-1} + \beta_2 y_{t-2} + \dots + \beta_p y_{t-p} + v_{t+h}$$
(5)

Nam Nguyen (UWM)

Forecasting model:

$$\Delta y_t = \alpha + \beta(L)\Delta y_{t-1} + \gamma(L)GAP_{t-1} + v_t$$
(6)

Baseline Model AR(1):

$$\Delta y_t = \alpha + \beta(L) \Delta y_{t-1} + v_t \tag{7}$$

Forecast combination

$$w_m = \frac{\widehat{\sigma}_m^2}{\widehat{\sigma}_1^2 + \widehat{\sigma}_2^2 + \dots \widehat{\sigma}_M^2}$$
(8)

 where σ²_m is inverted out-of-sample forecast error variance of forecast M based on the cyclical component M.

Nam Nguyen (UWM)

Forecasting Performance of Credit Gap Models (U.S.)

Horizon	HP	RU	BIS	Hamilton	Linear	Quadratic	BN	UC	Average	Bates-Granger
1	0.993	0.987	1.012	0.994	1.028	1.005	1.010	0.985	0.962	0.959
2	0.974	0.963	1.016	0.980	1.058	1.014	0.975	0.961	0.924	0.917
3	0.966	0.953	1.023	1.011	1.055	1.036	0.965	0.937	0.906	0.896
4	0.982	0.966	1.022	1.029	1.055	1.045	1.033	0.910	0.922	0.910
1 - 4	0.964	0.945	1.030	1.005	1.081	1.041	0.978	0.913	0.882	0.872

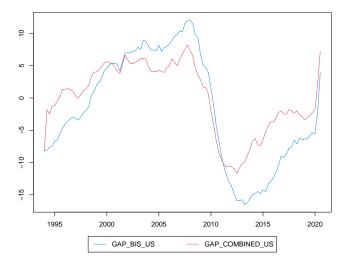
The table shows the ratio of RMSEPs of different models in comparison to the benchmark AR(1) model. The first set of forecasts is for 1994:Q1-1994:Q4; the final set is for 2019:Q3-2020:Q2. Q=1-4 denotes averages over next 4-quarters. HP is Hodrick-Prescott, RU is Ravn-Uhlig, BIS is based on Borio and Lowe (2002), BN is Beveridge-Nelson, UC is Unobserved Component Model.

Forecasting Performance of Credit Gap Models (U.K.)

Horizon	HP	RU	BIS	Hamilton	Linear	Quadratic	BN	UC	Average	Bates-Granger
1	1.001	0.990	1.001	0.992	1.010	0.979	1.028	1.009	0.977	0.979
2	0.979	0.970	1.007	0.969	1.016	0.962	1.028	0.999	0.962	0.957
3	0.979	0.971	1.018	0.969	1.055	0.966	1.009	0.989	0.959	0.955
4	0.990	0.987	1.028	1.005	1.055	0.981	1.019	0.981	0.972	0.967
1 - 4	0.972	0.952	1.034	0.960	1.081	0.929	1.054	0.985	0.918	0.910

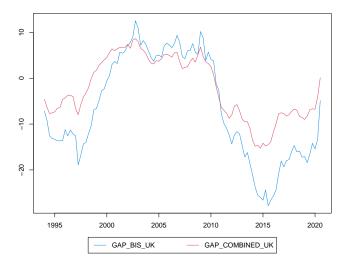
The table shows the ratio of RMSEPs of different models in comparison to the benchmark AR(1) model. The first set of forecasts is for 1994;Q1-1994;Q4; the final set is for 2019:Q3-2020:Q2. Q=1-4 denotes averages over next 4-quarters. HP is Hodrick-Prescott, RU is Ravn-Uhlig, BIS is based on Borio and Lowe (2002), BN is Beveridge-Nelson, UC is Unobserved Component Model.

Credit Gap Comparison (U.S.)



Nam Nguyen (UWM)

Credit Gap Comparison (U.K.)



Nam Nguyen (UWM)

Conclusion

Our results show that this method of combining credit gaps yield us a credit gap measure that dominates credit gaps from different trend-cycle decomposition methods in terms of superior out-of-sample forecasting of changes in credit-to-GDP ratio.

Thank You

I look forward to your questions and comments