Credit and House Prices Cycles

Nam Nguyen

UWM

August 27, 2022

Nam Nguyen (UWM)

Credit and House Prices Cycles

Chapter 1: Credit and House Prices Cycles

Introduction

Motivation

- The study of housing prices and excessive credit has become more important in understanding financial market stability
- We also observed increasing use of monetary policies, significant growth in macro balance sheet size, including real estate values and total credit lending to household
- We study the dynamic relationship between housing prices and household credit in this paper

Contribution

- 1. Relationship between housing prices and household credit
- Apply Unobserved Component Model (Clark 1987) to extract information about trends and cycles

 \Rightarrow Jointly examine the two variables and their interaction both in the long-run and short-run

• Specify cycles to be VAR process (cross-cycle) rather than univariate AR process

 \Rightarrow Test if past movement of one cycle has predictive power over another cycle

Contribution

- 2. Technical contribution to the optimization process:
- Novel numerical optimization / parameters constraint method to ensure the cyclical components are in feasible stationary region
- 3. Overcome "curse of dimensionality" using Bayesian method:
 - Common problem in estimating complex unobserved component state space model
 - We use random walk Metropolis-Hasting method to estimate posterior distribution of parameters of interest

Literature Review

- 1. Dynamics of credit changes:
- Kiyotaki & Moore (1997), Myerson (2012), Guerrieri & Uhlig (2016), Boissay et al (2016).
- 2. Dynamics of house prices changes:
- Hong & Stein (1999), Glaeser et al (2008) (2017), Kishor, Kumari, & Song (2015)

Literature Review

- 3. House price cycles generates credit cycles:
- Bernanke & Gertler (1989), Bernanke et al (1999); Kiyotaki & Moore (1997) "
- Empirical Evidence: Fitzpatrick and McQuinn (2007), Berlinghieri (2010), Gimeno and Martinez-Carrascal (2010), Anundsen and Jansen (2013), for evidence from Ireland, USA, Spain and Norway, respectively
- 4. Credit cycles genereates house price cycles:
 - Agnello & Schuknecht (2011), Kermani (2012), Justiniano et al (2019), Schularick et al (2012) (2016)

 \Rightarrow However, the debate on which cycle causes changes on the other is still open

Data

Bank of International Settlement (BIS)

- Household Credit to GDP: Total Credit to non-financial sector (household)
- House Price Index: Residential property prices: selected series (real value). Index = 100 at full sample average for each country
- 2 countries: US & UK
- Time frame: 1990:Q1 2021:Q3

Unobserved Component Model

$$100 * \ln \frac{Credit}{GDP} = y_t = \tau_{yt} + c_{yt}$$
(1)

$$100 * InHPI = h_t = \tau_{ht} + c_{ht} \tag{2}$$

• Trends:
$$\tau_{yt}$$
 & τ_{ht}

$$\begin{aligned} \tau_{yt} = \mu_{yt-1} + \tau_{yt-1} + \eta_{yt}, & \eta_{yt} \sim iidN(0, \sigma_{\eta y}^2) \\ \mu_{yt} = \mu_{yt-1} + \eta_{\mu yt}, & \eta_{\mu yt} \sim iidN(0, 0.01) \\ \tau_{ht} = \mu_{ht-1} + \tau_{ht-1} + \eta_{ht}, & \eta_{ht} \sim iidN(0, \sigma_{\eta h}^2) \\ \mu_{ht} = \mu_{ht-1} + \eta_{\mu ht}, & \eta_{\mu ht} \sim iidN(0, 0.01) \end{aligned}$$

Unobserved Component Model

• Cycles: c_{yt} & c_{ht}

$$c_{yt} = \phi_y^1 c_{yt-1} + \phi_y^2 c_{yt-2} + \phi_y^{\times 1} c_{ht-1} + \phi_y^{\times 2} c_{ht-1} + \varepsilon_{yt}$$
(3)
$$\varepsilon_{yt} \sim iidN(0, \sigma_{\varepsilon y}^2)$$
(4)

$$c_{ht} = \phi_h^1 c_{ht-1} + \phi_h^2 c_{ht-2} + \phi_h^{\times 1} c_{yt-1} + \phi_h^{\times 2} c_{yt-1} + \varepsilon_{ht}$$
(5)
$$\varepsilon_{ht} \sim iidN(0, \sigma_{\varepsilon h}^2)$$
(6)

Covariance Matrix

(7)

Optimization process

• Kalman filter with adjusted Likelihood function:

$$I(\theta) = -0.5 \sum_{t=1}^{T} ln[(2\pi)^2 |f_{t|t-1}|] - 0.5 \sum_{t=1}^{T} \eta'_{t|t-1} f_{t|t-1}^{-1} \eta_{t|t-1} - w1 \sum_{t=1}^{T} (c_{yt}^2) - w2 \sum_{t=1}^{T} (c_{ht}^2)$$

Empirical Results

VAR(2) - 1 Cross-lag Model Estimate - UK and US

		UK VAR2 1-cross lag		US VAR2 1-cross lag	
Description	Para.	Median	[10%, 90%]	Median	[10%, 90%]
Credit to household 1st AR parameter	ϕ_{v}^{1}	1.4238	[1.3585, 1.4892]	1.2074	[1.1374, 1.2785]
Credit to household 2nd AR parameter	ϕ_v^2	-0.4698	[-0.5305, -0.4090]	-0.2483	[-0.3152, -0.1825]
Credit to household 1st cross cycle AR parameter	$\phi_{y}^{\times 1}$	0.0238	[0.0154, 0.0319]	0.0318	[0.0228, 0.0407]
Credit to household 2nd cross cycle AR parameter	$\phi_y^{\times 2}$				-
Housing Price Index 1st AR parameter	ϕ_h^1	1.3173	[1.2647, 1.3701]	1.8038	[1.7700, 1.8363]
Housing Price Index 2nd AR parameter	ϕ_h^2	-0.3315	[-0.3885, -0.2746]	-0.8261	[-0.8605, -0.7903]
Housing Price Index 1st cross cycle AR parameter	$\phi_h^{\times 1}$	-0.0173	[-0.0464, 0.0062]	0.0104	[0.0007, 0.0204]
Housing Price Index 2nd cross cycle AR parameter	$\phi_h^{\times 2}$				
S.D. of permanent shocks to Credit to household	σ_{ny}	0.2714	[0.2150, 0.3155]	0.2954	[0.2312, 0.3414]
S.D. of transitory shocks to Credit to household	σ_{ey}	0.8021	[0.7699, 0.8376]	0.8631	[0.8287, 0.9012]
S.D. of permanent shocks to Housing Price Index	σ_{nh}	0.0789	[0.0742, 0.0845]	0.1390	[0.1222, 0.1618]
S.D. of transitory shocks to Housing Price Index	σ_{eh}	1.2242	[1.1886, 1.2613]	0.8988	[0.8641, 0.9355]
Correlation: Permanent credit to household/Permanent HPI	ρ_{nynh}	0.0189	[-0.3049, 0.3393]	0.0082	[-0.3117, 0.3226]
Correlation: Transitory credit to household/Transitory HPI	ρ_{eyeh}	0.2536	[0.1713, 0.3337]	0.1537	[0.0399, 0.2619]
Log-likelihood value	llv	578.6200	[576.1600, 582.1500]	204.9400	[202.4200, 208.4500]

Note:

UK - US Bayesian method random walk Metropolis-Hasting posterior distribution estimates

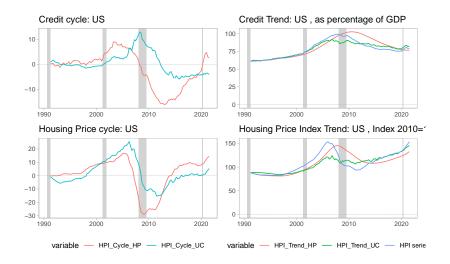
VAR(2) - 1 Cross-lag Model Estimate Summary

- The sum of AR parameters of the cyclical components in all three models is smaller, although close to one
- The standard deviation of the shocks in the cycles σ_{ei} is much higher than the standard deviation of the shocks to the trend σ_{ni} of both credit and housing prices
- Variations in the housing price cyclical components σ_{eh} of the UK are bigger than in the US
- The correlation of the shocks to the cyclical components among the two variables ρ_{eyeh} suggests that cyclical variation among housing price and household credit is strongly positively correlated

Cross-country Comparison of Causal Coefficients

	$\phi_{\mathbf{y}}^{\mathbf{x}1}$ HPI on Credit		$\phi_h^{\times 1}$	$\phi_{h}^{\rm x1}$ Credit on HPI		
Country	Median	[10%, 90%]	Median	[10%, 90%]		
Australia	0.0157	[-0.0093, 0.0412]	0.0521	[0.0014, 0.1060]		
Belgium	0.0279	[0.0013, 0.0559]	-0.0656	[-0.0980, -0.0339]		
Canada	0.0191	[0.0032, 0.0332]	-0.0152	[-0.0343, 0.0025]		
Finland	0.0080	[0.0017, 0.0156]	0.0085	[0.0021, 0.0156]		
France	0.0298	[0.0185, 0.0411]	-0.0643	[-0.1098, -0.0241]		
Germany	0.0728	[0.0500, 0.0917]	-0.0061	[-0.0282, 0.0052]		
Hong Kong	-0.0031	[-0.0079, 0.0019]	-0.0629	[-0.0836, -0.0453]		
Italy	0.1001	[0.0895, 0.1063]	-0.0027	[-0.0072, 0.0014]		
Japan	-0.0088	[-0.0326, 0.0174]	0.1659	[0.1202, 0.2173]		
Netherlands	0.0058	[-0.0039, 0.0166]	-0.0043	[-0.0156, 0.0070]		
New Zealand	0.0078	[-0.0035, 0.0199]	-0.0139	[-0.0249, -0.0036]		
Norway	0.0109	[0.0097, 0.0116]	0.0059	[0.0047, 0.0066]		
South Korea	0.0106	[-0.0033, 0.0308]	0.0027	[-0.0251, 0.0369]		
Spain	0.0144	[0.0003, 0.0331]	0.0051	[-0.0023, 0.0146]		
Sweden	0.0159	[0.0071, 0.0252]	0.0400	[0.0218, 0.0617]		
United Kingdom	0.0238	[0.0154, 0.0319]	-0.0173	[-0.0464, 0.0062]		
United States	0.0318	[0.0228, 0.0407]	0.0104	[0.0007, 0.0204]		

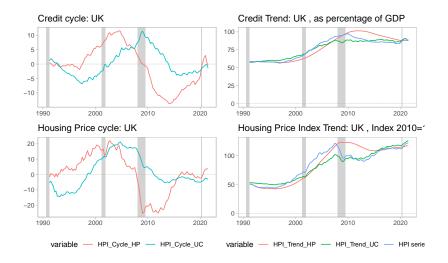
Nam Nguyen (UWM)


Credit and House Prices Cycles

Cross-country Comparison of Causal Coefficients Summary

- In 11 out of 17 countries, the HPI on Credit causal coefficient $\phi_y^{\times 1}$ are positive and significant. All 11 countries are in North America and Europe.
- Only 6 countries have positive and significant Credit on HPI causal coefficient $\phi_y^{\times 1}$. Three of which have smaller magnitudes than their $\phi_y^{\times 1}$ counterpart

 \rightarrow Overall, we found evidence that past transitory shocks to house price credit will cause a positive deviation in future transitory household credit. However, the effect in the opposite direction is much smaller and sometimes insignificant


Unobserved Component Graphs: United States

Nam Nguyen (UWM)

Credit and House Prices Cycles

Unobserved Component Graphs: United Kingdom

Nam Nguyen (UWM)

Conclusion

- Extracting temporary and permanent components information gave insights on the dynamics of the two series housing and credit in both short-run and long-run
- Evidence showing that past movement of a cycle (HPI) has predictive power over the other cycle (credit)

Thank You

I look forward to your questions and comments